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reboiler at the highest temperature, which is used in the 
trays to achieve separation, most of the energy is rejected 
to the cooling fluid in the condenser at the lowest tempera-
ture in the distillation column. Therefore, important studies 
have been conducted regarding energy savings in distilla-
tion columns and increasing the thermodynamic efficiency; 
for instance, the use of complex distillation columns such 
as thermally coupled distillation columns is a good choice. 
Among the thermally coupled distillation columns, the Pet-
lyuk distillation column is considered the most important 
option because it can be implemented using a single shell 
divided by a wall (Kaibel 1987). The Petlyuk distillation 
column consists of a prefractionator (C-1 column) fully 
coupled to the main distillation column (C-2 column), as 
indicated in Fig. 1a. In this complex distillation sequence, 
a ternary mixture (ABC), component A being the lightest 
and component C the heaviest, is separated into three nearly 
pure components; component A is obtained as a distillate, 
component B as the side-stream product and component C 
as the bottoms (Triantafyllou and Smith 1992).

The key concept in the Petlyuk distillation column is the 
replacement of the reboiler and condenser of the prefraction-
ator (C-1 column) by two recycle streams with the main dis-
tillation column (C-2 column), i.e., thermal couplings. It is 
important to mention that in industrial practice, the Petlyuk 
distillation column is implemented in a single shell divided 
by a wall in the middle section. This industrial implementa-
tion is called a dividing wall distillation column (DWDC, 
Fig. 1b) and is thermodynamically equivalent to the Petlyuk 
distillation column when no heat transfer occurs through the 
wall (Lestak et al. 1994).

In 1949, Wright (1949) patented the first DWDC, report-
ing important savings in energy consumption in contrast to 
the conventional distillation trains. However, the first indus-
trial implementation was not achieved until 1987 by Kaibel 
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Introduction

Distillation is the most used separation technique in indus-
trial practice despite its high energy demand and low ther-
modynamic efficiency (Agrawal and Fidkowski 1998; Flo-
res et al. 2003). The high energy demand can be explained 
by the fact that although the total energy is supplied in the 
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in BASF, reporting savings of around 30% in both energy 
and capital costs. After the implementation of the DWDC in 
BASF industries, several studies have been conducted on the 
application of this complex distillation column; for instance, 
Kiss (2011) and Kiss et al. (2012) have reported applications 
of DWDC for the production of biodiesel via reactive distil-
lation and the purification of bioethanol.

In the context of dehydration of bioethanol, Kiss and 
Ignat (2012), Kiss (2013) and Vázquez-Ojeda et al. (2013) 
have investigated the optimization of the separation of 
bioethanol using an extractive dividing wall distillation, and 
they have found that the energy required can be reduced in 
the range between 20 and 60% by using the dividing wall 
distillation technology.

Most of these studies have been conducted using process 
simulators, reporting significant reductions in the energy 
required in the reboilers. In the same context, Cossío-
Vargas et al. (2011), Delgado-Delgado et al. (2012) and 
López-Ramírez et al. (2016) have reported simulation and 
experimental studies about the esterification of oleic acid 
and methanol using an experimental DWDC.

Another important application of the DWDC has 
occurred in the production of bioethanol because, despite 
the route used, the product of the fermentation process is a 
dilute solution of bioethanol (7–12 wt% bioethanol). From 
that stream process, the bioethanol must be purified up to 
99.5 wt% in order to be mixed with gasoline in combus-
tion engines, and usually, this purity is achieved using two 
distillation columns. In the context of purification, Singh 
and Rangaiah (2017) have reported that this stage has con-
sidered energy integration and complex distillation schemes 
in order to reduce the energy requirements, but other impor-
tant techniques like hybrid options, including distillation and 

membranes, can be more efficient than distillation alone, and 
the cost of membranes can be reduced in the near future due 
to significant advances in this field.

As it can be read in the literature, research and develop-
ment need to be carried out in both design and control of 
complex distillation options to dehydrate bioethanol. For 
instance, Tututi-Avila et al. (2017) reported how to design 
energy-efficient side-stream extractive distillation process 
and, in the case of bioethanol dehydration, the thermally 
coupled distillation sequence with a side rectifier was trans-
formed into a distillation sequence with a side stream reduc-
ing the energy demand of the process.

Regarding the control of extractive distillation processes 
for bioethanol dehydration, Arslan and Kaymak (2017) 
have studied several distillation configurations and have 
found that the two-column distillation option can adjust the 
bioethanol composition close to the design specification 
in the presence of disturbances. Also, Zheng et al. (2017) 
have reported that integrated extractive distillation process 
can be controllable by using control loops of temperature. 
Finally, Patrascu et al. (2017) have reported that a heat-
pump-assisted extractive dividing distillation option can be 
controllable and operable. This point is important since it 
can be concluded that energy savings can be achieved with-
out introducing control problems.

The first distillation column, as indicated in Fig. 2a, b, 
removes most of the water as bottom product, and the dis-
tillate is a stream product rich in bioethanol whose compo-
sition is below the azeotropic point (95.6 wt% bioethanol). 
In the second part of the process (dehydration using glyc-
erol), extractive distillation can be used to obtain high-
purity bioethanol as reported by Hernández (2008). In that 
work, Hernández showed that the DWDC can be used to 

Fig. 1   Thermally coupled 
distillation columns: a Petlyuk 
column and b dividing wall 
distillation column
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obtain high-purity bioethanol as distillate using ethylene 
glycol as entrainer; the side stream is a mixture of ethanol 
and water, and the bottoms product is ethylene glycol. The 
author showed that the DWDC can exhibit two solutions in 
the heat duty required in the reboiler for the same values 
of the interconnecting liquid and vapor streams.

To complement that study, in this work we use glyc-
erol as entrainer in the dehydration of bioethanol, since 
ethylene glycol may be forbidden in the near future, due 
to toxicity, and its high availability for being a low-cost 
side product, obtained during biodiesel production (Rav-
agnani et al. 2010; Bauer and Hulteberg 2013). Also, we 
have conducted experimental studies about dehydration 
of ethanol using ethylene–glycol, glycerol and ionic liq-
uids, and the highest compositions in the produced etha-
nol were achieved by using glycerol (Navarrete-Contreras 
et al. 2014). Moreover, new results about multiplicities 
in DWDC are found: up to three values of the heat duty 
required in the reboiler can be obtained for a set of values 
assigned to the interconnecting streams. As a result, it is 
important to detect the minimum energy consumption in 
order to reduce costs in the complete process of bioethanol 
production.

Case study

The tray structures (total number of stages and interconnect-
ing stages, see Table 1) for the distillation sequences shown 
in Fig. 2 were taken from the previous work by Hernández 
(2008), considering a feed flow of 45.4 kg-mol/h of a mix-
ture of ethanol and water with a mole fraction of ethanol of 
10%, as saturated liquid at 1 atm. It is important to mention 
that ethylene glycol was replaced by glycerol (as saturated 
liquid at 1 atm) in order to use a non-toxic entrainer (Rav-
agnani et al. 2010). The first option considers a thermally 
coupled distillation sequence with a side rectifier (Fig. 2a), 
and the second option includes a DWDC (Fig. 2b).

It is important to mention that the preliminary designs of 
the thermally coupled distillation sequences of Fig. 2 were 
obtained by using the short-cut design method reported in 
Hernández and Jiménez (1999) based on the Fenske–Under-
wood–Gilliland method.

The simulation studies were conducted using a rigorous 
model of the distillation columns, using the RadFrac module 
of Aspen Plus, and the NRTL model was used for represent-
ing the vapor–liquid equilibrium. As reported by Hernández 
(2008), the energy required in thermally coupled distillation 

Fig. 2   Process flowsheet for the 
purification of bioethanol using 
conventional distillation and 
extractive distillation
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columns depends strongly on the values assigned to the 
interconnecting flows. For that reason, in order to detect the 
minimum energy consumption for a given tray structure, a 
complete search on the interconnecting flows is required. In 
the case of the Petlyuk distillation column or its equivalent 
in the form of the DWDC, it is necessary a search in the 
liquid and vapor interconnecting streams.

The energy optimization of the DWDC was conducted in 
the following manner: A value for the interconnecting vapor 
flow was set, and a complete search in the interconnecting 
liquid stream was carried out so that the local minimum 
energy required in the reboiler was obtained. It is important 
to highlight that usually the search is conducted from low to 
high values of the interconnecting liquid flow, but in order 
to detect multiple solutions, the search must be repeated in 
the opposite direction starting from high to low values of 
the search variable. The optimization procedure is repeated 
for several values of the interconnecting vapor stream until 
the global minimum of energy is detected. It is important to 
mention that our study is focused on the energy optimization 
because, according to Doukas and Luyben (1978), even for 
complex distillation sequences, the utility costs represent up 
to 80% of the total annual costs.

Results

As indicated in the case study section, the first distillation 
option involves the use of a thermally coupled distillation 
with a side rectifier where a reboiler is replaced by a vapor 
stream (Fig. 2a). The variation of this stream is depicted in 
Fig. 3, considering several flows of glycerol, where the feed 
stage can be either 3 or 5. It is important to mention that the 
entrainer must be supplied near to the top of the distillation 
column since the ethanol–water forms a minimum boiling 
point azeotrope. According to Fig. 3, the energy consump-
tion is increased with the flow of glycerol due to its high 
boiling point, and the minimum amount of glycerol required 

to achieve the purity of ethanol is 6.8040 kg-mol/h. Also, 
it is noted that energy consumption is very similar when 
the glycerol is fed in either stage 3 or 5. Finally, for the first 
option, Fig. 4 indicates the composition profile of the main 
distillation column and the mass fraction of ethanol of 0.995 
is reached in the top of the distillation column, representing 
a mole recovery of ethanol of 98%. Also, an advantage of 
this complex distillation sequence is that glycerol is recov-
ered at high purity in the bottoms.

The energy optimization for the DWDC is complex 
since two recycle streams need to be varied to detect the 
optimal requirement of energy in the reboiler. Since no 
important changes were observed in the optimization of 
the thermally coupled distillation column with a side recti-
fier for feed tray of glycerol at either 3 or 5, we fixed tray 
stay as suitable for the feed of glycerol. Several values of 
glycerol were considered; for instance, in Fig. 5 we can 
see that for some values of the interconnecting flow of 

Table 1   Important design 
variables for the distillation 
sequences

a Stages are numbered from top to bottom

Conventional distillation column Total stages = 30a

Feed stage = 26
Distillation column with a side rectifier Main distillation column:

Total stages = 20
Glycerol feed stage = 3
Feed stage = 10
Side-stream stage = 15

Side rectifier:
Total stages = 10

Petlyuk distillation column Main distillation column:
Total stages = 20
Glycerol feed stage = 3
Vapor feed stage = 6
Liquid feed stage = 16
Side-stream stage = 10

Prefractionator:
Total stages = 10
Feed stage = 5
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vapor, two values of heat in the reboiler are obtained. It 
can be observed that both steady states differ significantly; 
as a result, it is important to detect the minimum energy 
consumption, since differences of up to 400% can be pre-
sented. This finding has several implications; for instance, 
the differences in the green house gases emissions and 
cooling water requirements are of the same order of mag-
nitude and the huge energy usage in the upper case can 
lead to a very important reduction in the net energy gain 
in the bioethanol production. This implies that reductions 
in the energy consumption are translated into reductions 
in greenhouse gases emissions, because most of the energy 
used in distillation is obtained from fossil fuel. Also, the 

reduction in the energy required in the reboiler diminishes 
the cooling water required in the condenser.

We detected a new curve for the energy required in the 
reboiler when the interconnecting vapor flow is 0.4536 kg-
mol/h by conducting a search for low values of the intercon-
necting liquid flow and considering several search starting 
points. As a result, for a given value of the interconnecting 
liquid flow, three solutions can be found (Fig. 6), but accord-
ing to the shape of the curves, the middle curve represents 
unstable solutions (Fig. 7). This result is very similar to that 
obtained in the operation of chemical reactors that can pre-
sent similar multiple solutions (Fogler 1999). It is impor-
tant to mention that Kano et al. (2011) have found multiple 
steady states in binary distillation, and these multiplicities 
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Fig. 4   Liquid composition profiles in the main distillation column of 
the thermally coupled distillation sequence with a side rectifier
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depend on the physical properties of the mixture, and the 
study is inspired in the occurrence of multiplicities in a non-
isothermal continuous stirred tank reactor. Also, using the 
same base, Purohit et al. (2013) have concluded that the 
interaction between reaction and distillation can conduct 
multiple steady states in reactive distillation. Finally, for 
the BTX separation process, Wang (2015) and Gupta and 
Kaistha (2015) have reported the presence of multiple steady 
states that must be considered in the operation and control.

Another important point to take into account in the use 
of ethylene glycol or glycerol as entrainer in the bioetha-
nol dehydration process is associated with the normal boil-
ing points of the entrainers. The normal boiling points are 
197.08 and 287.71 °C for the ethylene glycol and glycerol, 
respectively. It is important to highlight that in the case 
of the use of glycerol, the pressure of the heating vapor is 
higher than in the case of ethylene glycol, conducting to the 
use of a more expensive heating medium.

Our future research will be focused on finding multiple 
steady states in experimental tests and the corresponding 
controllability study in order to detect the best design in 
terms of energy and control (García-Ventura et al. 2016); 
for that reason, we have implemented an experimental divid-
ing wall distillation column which consists of three packed 
sections of 2.5 m of total height and 0.17 m of inner diam-
eter. The column is filled with Teflon Raschig rings and is 
instrumented with six thermocouples. Our preliminary tests 
indicate that it is possible to obtain high-purity bioethanol 
using the dividing wall distillation column and glycerol as 
entrainer; for example, Fig. 8 presents the composition of 
the distillate during the time and the composition of ethanol 
is around 99 wt%. Other important variables that we have 
registered are the temperatures; in Fig. 9, Tb represents the 

temperature in the reboiler of the distillation column, and 
as expected, it is higher than the temperature in the dis-
tillate (T5) during the complete operation of the experi-
mental DWDC. The temperature obtained in the reboiler is 
important since it is associated with the cost of the heating 
medium.

Conclusions

The energy optimization of thermally coupled distillation 
sequences for the purification of bioethanol using glycerol 
as entrainer was revisited. The energy optimization revealed 
a region where three solutions for the heat duty supplied to 
the reboiler can be found. As reported in the open literature, 
these multiplicities are found in binary distillation and com-
plex reactive distillation columns. These multiplicities can 
be attributed to nonlinearities in the model, physical proper-
ties and interactions between the reaction and the separation.

Two of them are stable solutions with a very significant 
difference; as a result, the detection of the solution with the 
minimum energy consumption is essential. The third solu-
tion is a curve with a sigmoid shape with unstable solutions. 
This result has not been reported previously in the open lit-
erature according to the review and knowledge of the theme 
in our research group. Also, it is important to detect the 
dehydration process with the minimum energy consumption 
since it is well known that this step is very energy inten-
sive. Furthermore, the reductions in energy consumption are 
translated into reductions in gas emissions and cooling water 
used in the condenser. Finally, we can conclude that glycerol 
can break the ethanol–water azeotrope, but the temperature 
in the bottom part of the distillation column is increased.
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